Learning Objectives

- Define anemias.
- Describe the etiology, pathology, clinical features, diagnostic studies, and management of iron deficiency anemia, A- and B-Thalassemias, sickle cell anemia, aplastic anemia, and megaloblastic anemia.

Learning Objectives

- Identify the causes, diagnosis, and treatment of Vitamin B12 deficiency and total body folate deficiency.
- Describe the causes, clinical features, diagnosis and treatment of Glucose 6 Phosphate Dehydrogenase (G6PD) deficiency.

- Requirements each hour each day
 - 1.5 X 109 RBCs
 - 1.5 X 109 WBCs

- Process
 - Pluripotent hematopoietic stem cell differentiates into specialized blood cells (hematopoiesis or hemopoiesis)

Pluripotent Hematopoietic Stem cell

Lymphocytic Progenitor Cells

Hematopoietic Stem Cells

-T. Lymphocytes

-B. Lymphocytes

Granuloctic Progenitor Cells

Megakaryocytic Progenitor Cells

Erythroid Progenitor Cells

- Anemia
 - Reduction in red cell mass
 - Reduction in the hemoglobin concentration
 - Homeostasis upset

- Possible etiologies
 - Primary derangement of the marrow
 - Accelerated loss of red blood cells peripherally
 - Systemic pathology
- Sign of underlying pathology

- Definition: Hematocrit or Hemoglobin
 - < lower limit of normal
 - Men: Hematocrit <41% or Hemoglobin <13.5g/dL
 - Women: Hematocrit <36% or Hemoglobin <12g/dL

- Clinical manifestations
- Physical exam
- Family history
- Lab studies

- Clinical manifestations
 - Fatigue
 - Dyspnea
 - Lightheadedness
 - Decreased exercise tolerance
 - Headache
 - Angina

- Physical exam
- Pallor
- Glossitis
- Jaundice
- Splenomegaly
- Neurological abnormalities
- Bone tenderness
- Hemoccult positive feces

- Family history: Get details
- Lab studies
 - Reticulocyte Production Index (RPI)
 - Reticulocyte is early blood cell,
 1-2 days old, released from bone marrow

Reticulocyte = Retic% X (<u>Pt Hematocrit</u>)
% corrected reported 45

then

Reticulocyte Production Index (RPI) = Retic% corrected Correction Factor

Patient Hct %

Correction factor

40-45%	1.0
35-39%	1.5
25-34%	2.0
15-25%	2.5
<15%	3.0

RPI = < 2.0 Inadequate bone marrow response (hypo-proliferation)

RPI = > 3.0 Appropriate bone marrow response

- Other CBC parameters
 - WBC, platelets counts
 - Mean Corpuscular Volume (MCV): measure of av. RBC size or volume
 - Red Cell Distribution Width (RDW):
 RBC size generally not variable

- Peripheral Blood Smear
 - Inspect, describe, define any abnormalities
- Hemoccult
 - Do 3 times

Total body iron

Adult males – 3800mg

Adult females – 2500mg

- Iron pathway in the body
 - Iron in developing red blood cells
 - Old erythrocytes removed from circulation, iron freed from Hb, stored as ferritin/hemosiderin or released to transferrin
 - Iron bound to transferrin (plasma iron transporting protein) carried to bone marrow for uptake

- Iron absorption
 - Duodenum, jejunum
- Sources of iron
 - Heme iron: Meat, fish, liver
 - Non-heme iron: Vegetables, legumes

- Vit C, amino acids promote absorption
- Tea, veg. fiber increase uptake
- Gastric acid helps in solubility

- Prevalence
 - Common nutritional deficiency worldwide
 - In U.S. found in women of childbearing age, infants, adolescents
 - In men, nonmenstruating women
 - Blood loss

- Categories
 - Iron deficiency without anemia
 - Iron deficiency anemia

Iron Deficiency Anemia - Causes

- Inadequate dietary iron
- Blood loss
 - Generally signifies pathological loss such as G.I. bleeding, vascular malformations, hookworm infestations, frequent blood donations
- ~ 50% on renal dialysis show deficiency

- Clinical features
 - Fatigue
 - Irritability
 - Headaches
 - Paresthesias
 - Pallor
 - Glossitis (a smooth red tongue)

- Angular cheilitis
- Koilonychia (spooning of the nails)
- Pica (eating ice, clay, dirt)

- Laboratory findings determine if:
 - Degree of anemia is mild to severe
 - Mean corpuscular volume is decreased
 - Red cell distribution width is decreased

- Laboratory findings determine if:
 - White blood cells are normal
 - Platelets are normal to increased
 - Serum ferritin is low (12microg/L)

- Management
 - Identify cause, correct if possible
 - Oral iron therapy
 - Adult dose 200 mg/day elemental iron
 - Pediatric dose 5mg/kg/day elemental

- Management
 - Duration: Anemia usually corrected in 4-6 wks, continue for 3-6 mo, check serum ferritin concentration

- Management (cont')
 - Iron dextran (INFeD®)
 - Iron sucrose (FERRLECIT®, VENOFER®
 - Has less severe reaction than with iron dextran

- Inherited disorders
 - <synthesis of a- or b- globin chains of Hb molecule
 - Occurs often in those of Mediterranean descent
 - Hallmark is insufficient a- or b- chain production

Genotype	Phenotype	Heme Findings
aa/aa	normal	normal
aa/a-	silent carrier	normal
aa/ or a-/a-	A- Thalassemia trait	mild hypochromic in newborns Hb Barts (10%)

Genotype	Phenotype	Heme Findings
a-/	Hb H disease	in adults, Hb4 (5-40%) in newborns Hb Barts 20-40% hemolytic disease + ineffective erythropoiesis

Genotype	Phenotype	Heme Findings
/	Hydrops fetalis	stillborn, anemic macerated fetus. Cord blood nearly 100% Hb Barts

- Prevalence of trait / symptoms
 - a-/a- 7% Africans
 - a-/a- common in S.E. Asia
 - MCV <78dL; slight anemia
 - Hb Barts 2-10% in newborns

A-Thalassemia

- Prevalence of trait / symptoms (cont')
 - Diagnosis of exclusion (iron deficiency, B-Thalassemia, hereditary sideroblastic)
 - Do not confuse with iron deficiency
 - Do not treat with iron

A-Thalassemia

- Hemoglobin H disease
 - Hb H stains with cresyl blue
 - a-/a-, S.E. Asia
 - 20-40% Hb Barts in newborns;
 5-40% Hb H in adults

A-Thalassemia

- Hemoglobin H disease (cont')
 - Variable hemolytic anemia;
 splenomegaly
 - Ineffective erythropoiesis, ironloading

B-Thalassemia

- Molecular defect/absent/reduced production of b-globin chains
- Broad spectrum of abnormalities
- Known as Mediterranean or Cooley's Anemia
- Fatal prior to transfusion and iron chelation therapy

B-Thalassemia-Pathophysiology

- > erythropoiesis, but ineffective
- Erythroid marrow expansion with bony deformities
- Progressive splenomegaly
- Extra-medullary hematopoiesis
- >iron absorption, progressive deposition in tissues

B-Thalassemia Clinical Features

- Skeletal changes
- Extra-medullary hematopoiesis
- Growth retardation
- Delayed sexual maturation
- Myocardial iron overload

B-Thalassemia Clinical Features (cont')

- Hepatic iron loading
- Pigmented gall stones
- Severe microcytic anemia, splenomegaly

B-Thalassemia - Prognosis

- No Rx-death by age 5 from infections, cachexia
- Episodic blood transfusions-Survival until 20s
- Aggressive blood transfusions-Death at age 20 from iron overload
- Aggressive blood transfusions + iron chelation-Prolonged survival

B-Thalassemia - Management

- Hypertransfusion in 2nd or 3rd yr to maintain Hb at 10g/dL
- Splenectomy
- Iron chelation after age 3
- Possibly bone marrow transplant
- Possibly increase synthesis of fetal Hb

B-Thalassemia Minor

- No clinical symptoms
- Labs
 - Mild to absent microcytic anemia
 - Peripheral blood smear shows microcytosis, hypochromia, targeting, basophylic stippling
 - Hb electrophoresis/quantitation: HbA >90%, HbA2 3.5-8.0%, HbF normal/>

Sickle Cell Anemia

- HbS: Sickle hemoglobin, most common heritable disease worldwide
- Prevalence
 - > tropical Africa/slave trade blacks
 - Some in Saudi Arabia, India
 - In U.S./Latin Am/Caribbean 8% blacks with gene
 - Note: Sickle cell trait not a disease

Sickle Cell Anemia - Symptoms

- Usually none until 6-12 months old
- Expression of HbSS limited during fetal and early postnatal life by HbF
- No single pattern of symptoms, but may include: pain and swelling in hands and feet, fatigue, paleness, shortness of breath, eye problems, yellowing of skin/eyes, delayed growth

Sickle Cell Trait - Labs

- Normal MCV, MCH
- Normal blood smear
- Normal reticulocyte count
- HbA 60%, HbS 40%
- Normal levels of HbA2, HbF

Sickle Cell Anemia – Lab Values

- Moderate-severe normocytic normochromic anemia by age 3 mo., persistent
- Av Hb 6.0-10.0g/dL
- Adults, mean MCV = 90
- Blood smears: sickled forms
- Howell-Jolly bodies reflect asplenia
- >WBC, platelets

Sickle Cell Anemia

- Diagnosis
 - Electrophoretic chromatographic studies
 - HbS predominant, HbF present, HbA2 normal

Sickle Cell Anemia

- Management
 - Folic acid 1mg PO qd
 - Hydroyurea [generic]15-35mg/kg
 PO
 - RBC transfusions
 - Stem cell transplant in children
 <16 yr, now for adults

Aplastic Anemia - Symptoms

- Bleeding in skin/mucous membranes
- Fatigue, fever, infection
- Mortality secondary to infection
- Pancytopenia

Aplastic Anemia - Etiologies

- Idiopathic in 50%
- Chemicals
- Chemotherapy
- Ionizing radiation
- Viral infection
- Leukemia
- Medications: Chloramphenicol, sulfa
- Auto-immune disorders

Aplastic Anemia

- Diagnosis
 - Bone marrow biopsy
- Epidemiology
 - 2 / million worldwide
 - Prevalent in Orient
 - Peaks in late adolescence/early adulthood

Aplastic Anemia

- Pathogenesis
 - <Hematopoiesis
 - Autoimmunity
- Therapy
 - Supportive: blood product transfusions, antibiotics
 - Bone marrow transplant, immunosuppression
 - If severe: ATG + cyclosporine

Megaloblastic Anemia

- Cause
 - Impaired DNA synthesis, cell division impaired, cells enlarge
 - Vitamin B12 and folic acid deficiency

- What is normal
 - 1-10mg total body Vitamin B12
 - Daily dietary requirement 2 micrograms

- Causes of deficiency
 - Pernicious anemia, Gastrectomy
 - Pancreatic insufficiency
 - GI bleeding, Vitamin B12 malabsorption
 - Exposure to nitrous oxide
 - Neurological findings

- Diagnosis
 - Check B12 levels. If borderline, then check >serum or urine methylmalonic acid
 - LDH-1 isoenzyme > LDH-2
 - Elevated indirect bilirubin, serum iron, <haptoglobin

- Cause
 - Determine from clinical history/Schilling test
 - Schilling test
 - B12 test dose administered

- Treatment
 - I.M. Vitamin B12
 - Check for hypokalemia, cardiac arrhythmias, monitor serum potassium

- Treatment
 - Suggested I.M. injection schedule
 - 1000mg qd I.M. or sub Q for 1-2 wks, then 1000mg I.M. each mo. for life, maintenance of 1000mg/day oral

Total Body Folate Deficiency

- Can cause megaloblastic anemia
- Adult has 5-10mg total body folate
- Usually accompanies Vitamin B12 deficiency
- Treatment
 - Folic acid therapy: oral 0.5-1.0mg/day
 - Give B12 also

Glucose 6 Phosphate Dehydrogenase Deficiency (G6PD)

- Hemolysis: Hallmark of hemolytic anemia, premature destruction of RBCs
 - Causes: acquired abnormal factors in intravascular environment, intrinsic RBC defects genetically determined

Glucose 6 Phosphate Dehydrogenase Deficiency (G6PD)

- G6PD deficiency: Hereditary hemolytic disorder of RBC enzyme defect, sex linked, affects males, carried by females
- Hb, RBC membranes at risk

G6PD Dediciency

- Clinical feature
 - Rapidly developing intravascular hemolysis
- Causative Agents
 - Infections, other illnesses
 - Drugs: antimalarials, sulfonomides, sulphones, other antibacterial agents, analgesics, anti-helminths, miscellaneous, fava bean

G6PD Deficiency

- Diagnosis
 - Between crises, blood count normal
 - During crisis, smear shows contracted and fragmented cells, "bite"/"blister" cells, Heinz bodies in reticulocytes
 - Do RBC assay, check G6PD level

G6PD Deficiency

- Treatment
 - Stop offending drug, maintain >urine output, blood transfusion, corticosteroids

Summary

- Definition of anemias
- Etiology, pathology, clinical features, diagnostic studies, and management of iron deficiency anemia, A- and B-Thalassemias, sickle cell anemia, aplastic anemia, and megaloblastic anemia

Summary

- Causes, diagnosis, and treatment of Vitamin B12 deficiency and total body folate deficiency
- Causes, clinical features, diagnosis and treatment of Glucose 6 Phosphate Dehydrogenase (G6PD) deficiency